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Global geometric indicator of chaos and Lyapunov exponents in Hamiltonian systems
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Recently a geometric description of chaos in Hamiltonian systems has been formulated using the tools of
Riemannian geometry. Here, Hamiltonian chaos is explained in terms of the curvature properties of the
configuration space manifold. In particular, it has been claimed that the average of an appropriately defined
sectional curvature(®)) over a constant energy manifold is a measure of the global extent of chaoticity for
systems with a small number of degrees of freedom. We investigate the relations between this K{Antity
and the maximal Lyapunov exponenfor some Hamiltonian systems of physical interest with two degrees of
freedom. We find that there is a close relation betw¢& and\ 2. Both the quantities scale &'? for quartic
potentials, where is the energy. They are expected to scal&E8s 2" for a general potential of degree
However, we find that thougK(® is a global indicator of chaos, it is not a sufficiently accurate measure of
order-chaos transitions, in all cases.
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I. INTRODUCTION whereJ'=5q' denotes the tangent vectdt/(ds) is the co-
variant derivative along a geodesic, aﬁpl is the Riemann
Recently a geometric approach has been developed to egurvature tensor.
plain the origin of chaos in Hamiltonian systefiis-5]. This Pettini and co-worker§l—5| have shown that the domi-
approach exploits the fact that the trajectories of a Hamilnant source of chaos in Hamiltonian flows of physical inter-
tonian system can be viewed as geodesics on a Riemannigat is the parametric resonance induced by fluctuations of the

manifold endowed with a suitable metric. scalar curvature even in regions where the curvature is
Consider a dynamical system described by the Lagrangmostly positive. This is true of systems with small as well as
ian, large number of degrees of freedom. This approach is differ-
] ent from the geometric description of chaos in abstract er-
L(9,9)=2%a,(q)q'qg"—V(q), (1) godic theory, where chaos arises due to the negativeness of
the curvature of the manifold. More recently, a local geomet-
or equivalently the Hamiltonian, ric indicator of chaos for single orbits in the Henon-Heiles
, Hamiltonian system has been formulated by casting the dy-
H(p,a)=3a™(a)pipi+ V(). (2)  namics as a geodesic flow on a Finsler maniffdl This
gives a one-to-one correspondence between geometry and
For a fixed energy, define the metric tensor instability and helps to discriminate between regular and sto-
chastic orbits on a given energy surface.
9ij=(E-V)a, ©) The geometric approach to chaos has another attractive
) _ feature. For systems with a large number of degrees of free-
and the “interval” or the “proper time"ds by dom (N), it has been shown that the “global degree of chao-
_ i 2 12 ticity” can be obtained by computing the mean Ricci curva-
dsz—gijdq dg'=2(E-V)“dt". @ ture averaged over a constant energy manifold, independent

) . of the dynamics of the systef@]. It is possible to obtain an
It can then be shown that the equations of motion can bena\ytic” estimate of the largest Lyapunov exponntby
written as geodesic equations in a Riemannian manifold, aking a Gaussian hypothesis about the statistics of curva-
ture fluctuations along a geodesic. This exponent is in very

ﬂJr i d_q'd_qk: (5) good agreement with the corresponding exponent obtained

ds* " Jkds ds from tangent dynamic§3]. Moreover, it has been demon-
' strated that the geometric approach can even provide a
wherel'j, are the Christoffel symbols associated wigh. framework for understanding phase transitions that are re-

Further, the Jacobi-Levi-Civita equation for the geodesidated to the singular behavior of curvature fluctuatipbk
spread[6] is essentially the tangent flow equations in theWhen the number of degrees of freedom is small, one has to

geometric form[1], take recourse to other methods as the Gaussian hypothesis is
. . untenable. It has been proposed that the average of a suitable
vV /(VvJd i kdq' ddg! negative sectional curvaturgo be defined in the next sec-
ds! ds *| Riw ds/ds (6) tion) over a constant energy manifold, is a global indicator of

chaos for Hamiltonian systems with two degrees of freedom
_ [4]; this has been verified in the case of thénde-Heiles
*Email address: tphysmu@satyam.net.in model. In this paper, we explore the relation between this
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geometric quantity and the Lyapunov exponent for someéThe sectional curvatur(?)(J,v) depends upon the choice
Hamiltonians of physical interest and examine the veracityof J. For a system with two degrees of freedom, a simple

of this claim. choice isJ=(Jy=0J;=0,,J,=—0;,J3=0). This choice
satisfies(J,v)=0. Corresponding to this choice, the sec-
Il. SECTIONAL CURVATURE AS A GLOBAL MEASURE tional curvature for a system with two degrees of freedom
OF CHAOS can be shown to be
By simple algebraic manipulations of E), it can be . 1 N 2
shown that KO,0)= 57| g oz~ 25l
2(E=V)| gq7 = 993 99190;
1 d? vV |2 (15
— 24 K®@ 2_ |24l =
S EkeaupE-| Tl <0 @

(K@) is the average of the negative values assumed by the

where sectional curvature over a constant energy surkaceand is

N given by
[9]7=g;;3'37, 8 1 1
a4 K)=255 J doek®= 155 f dpdas(H(p.q)
ui=d—q, with (J,v)=gy I =0, ) e) e :
S ~E)0(—K@)K®(p,q), (16)

(2) - i -
andK'<’(J,v) is the sectional curvature given by where the ared\(3.) is given by

J* dg” J7 dgt

(2) — _ -+t - -7
KEQVI=Runn 3] ds 9] ds

10
{10 A(Se)= fz doe= f dpdgsH(p,q)—E), (17

It is obvious from Eq(7) that any point withK(®)<0 is an

unstable point. Hence it is expected that the averagé®f  and® is the step function. This quantitk‘?)) is the object

over those points in the manifold where it is negative, will of central interest in this paper. )

give information about the degree of chaos for that manifold. It has been shown in the case of thenda-Heiles system,
It has been argued that it is necessary to go to a highehat there is a close correspondence betw@eéR’) and the

dimensional manifold by augmenting the configurationfraction of phase space that is chadiibtained by comput-

space, to get reliable information about the degree of chadsg the maximal Lyapunov exponektfor a large number of

in the systeni1,4]. It turns out that an enlarged configuration initial conditiong. In particular, in this syster(K(,Z)) gives a

space equipped with the Eisenhart mefB¢ is well suited  correct estimate of the transition from order to chaos, when

for the purpose. The local coordinates of the enlarged manihe energy is varied.

fold areq®,q*, ... q",q""* whereq*, ... g" are the coor- We make a detailed comparison betw¢i?)) and\ for

dinates of the systemg°=t is the time coordinate, and the following two systems with two degrees of freedom.

gqV*1is an extra coordinate related to the action. The Eisen- (1) Coupled quartic oscillatofCQO):
hart metric @g) ,, is defined through the relation
2 2
o P1 P2
dsg=(ge) ., d“dq’ =a;;dq'dd’ —2V(q)(dg°)’ H==+ = +di+d;+ qias, (18

+2dqdgVte, (11 _ . .
where « is a parameter. This system with a homogeneous

where u,»=0,1,...N+1, i,j,=1,... N, and a; is the quartic potential, is known to be integrable fo=0, 2, and
kinetic energy matrix. Whem;; = §;; , it can be shown that 6 and certainly nonintegrable for higher valuesaofBy way
the geodesic equation leads to the equations of motion wheof illustration, we give the Poincare surfaces of section cor-
responding to the integrablex&6) and nonintegrable o
=15) cases in Fig. 1. The Hamiltonian in E@L8) finds
several applications, particularly in high-energy phy$&k

(2) Yang-Mills-Higgs (YMH) Hamiltonian:

t .
dSE=ZCidtz,qN“(t)=Cit+cz—f L(g,q)dt, (12
0

C1,C, being arbitrary constants. Further, the only nonvanish-
ing Christoffel coefficients in this case are pi Pl s 3 4, 3 L, 1
H=Z+ 5 #3010+ 701+ 5«02~ 5 k3. (19
Th=dV, Tht=-0aV, (13

This is the dynamical system corresponding to the Yang-
'f\ﬁills-Higgs field theory that is of great physical interest in
22V high-energy physics, when spatially homogeneous fields are
- (14)  considered and a suitable ansatz for the fields is employed
aq'ag’ [10,11]. Here«k is a parameter.

and the nonvanishing components of the Riemann tensor a

ROin:
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A constant energy manifold is covered by “regular is- The sectional curvatur&(® corresponding to CQO is
lands” for whichX is zero, surrounded by “chaotic regions” given by
corresponding to which is a positive number. For specified
values of the energlf and the parameter of the system ¢r @) ) o o ) o o
), \ is computed for a large number of randomly chosen  Kcqo= 2, 5[(1207+ 2a03)pa+ (1205 + 2aq7) p1
initial conditions to determine the average value.aind the PPz
fraction of the phase spaéecorresponding to chaotic trajec- —8aq10,p1P>2]. (20
tories.f is simply the fraction of the number of initial condi-
tions for which\ is a positive quantity. An integration time For this system, we computK®) using Egs.(16), (17),
~10000 units was sufficient to ensure convergenck,dh  and (20). The maximal Lyapunov exponeit is computed
all the cases we considered. The numerically computed valuler E=1024 and several values ef. \ is computed for
of \ is not exactly zero on finite time scales, even for regular2000 random initial conditions for each value ef corre-
trajectories. For practical purposes we topkto be zero, sponding to this energy. From this, we fi{id), the average
whenever it was less than 0.001. In fact, we found thatas  value of the Lyapunov exponent amaver the 2000 initial
either a positive quantity significantlia few orders of mag- conditions for a particular value af. (\) andf differ very
nitude larger than 0.001, corresponding to chaotic trajectodittle from their values corresponding to 500 or 1000 random
ries, or a number less than 0.001, corresponding to regulanitial conditions indicating that the size of the sample cho-
trajectories. sen for computations is more than adequate. To facilitate
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FIG. 2. Plots of(a) f, (b) —0.1533 (K®)),
0.4 and (c) 0.1012(\)? againsta for the system of
0.3 - coupled quartic oscillators.
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comparison amongk®), f, and(\)2, we plot them in the 2V 2V 2V
same graph againat in Fig. 2.(K®) and(\)? are normal- r=—, t=—, and s= FET (26)
ized such that at= 15, the scaled values ¢K®)) and(\)? 99; 992 172
are equal tof (=0.904) ata=15. It is seen thatK‘®) is In the diagonal representation
closely related ta(\)? rather thanf. We will discuss this
point later. d2g,
It is remarkable that all the quantities are zero éor6. — = ok (27)
This can be understood from the stability analysis of the dt
syst-em or the Toda-Bru_mer crlteruﬁﬁ,l-Z]. The equatlon. of whose solution is
motion for a conservative system with potenth(q;) is
given by £(D) = exp(\ = i) £(0). (28)
d?q; N If we have a region wheret—s’=de{d;V] is negative,
a2 == ﬁ_qiv =1, 2. (21 then one of the eigenvalues or o, is necessarily negative

and for this negative eigenvalué,or 6q evolves exponen-
tially with time. Hence, the system is hyperbolic, corre-
sponding to diverging trajectories, when[di%l\/]<0.

For the coupled quartic oscillatolV=q3+ g3+ 03q3

The stability of a trajectory is determined by considering
infinitesimal variationssg; of g;, which satisfy the equa-

tions, . . : )
and this translates into the inequality,
d?sq; _ 2.2 2_ 22
dtgl ——w, 50, 22 (a—6)(at+2)qiq5—2a(q;—03)>0. (29
As « is positive, this inequality is satisfied only when
Where >6. When a<6, rt—s?>>0 for all values ofqg, and g,.

Then [ +1)%2—4(rt—s?) =(r —t)?+4s? is positive and less
than {+1t)2. Henceo, ando, are necessarily real and posi-
= (23)  tive. As a consequence, there are no diverging or chaotic
9q;dq; trajectories whenv<6.
. . ) . From Eqgs.(18) and(20), it is easily seen that under the
is the stability matrix By a suitable orthogonal transforma- scaling transformationp,— 8¥%p;, o;— BY“q;, the energy
tion &1, scales aE— BE andK(?) scales ak(®— Yk (?), Hence
(K@) scales agK ®)~EY2 when the energy is varied. Un-
&= Qi 60, (249 der the same scaling transformatiefy — 252V, asV s a
homogeneous quartic ig; andg,. The eigenvalues of the
we can diagonaliz8V= Jd3V. The eigenvalues;, o, of W stability equationg; have the same scaling property gy .
are given by Henceo;— B2, under this transformation. The Lyapunov
exponentA is the average exponential rate of divergence of
o= 3[r+t=\(r+1)2—4(rt—s?)], (25  neighboring trajectories. From Eq28) it is clear that\
~y—o, as far as the scaling properties are concerned,
where thoughA is a global quantity and, are local by nature. This

*V
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FIG. 3. Plots of(a) f, (b) —3.943 (K}, and
(c) 0.648 (\)? against« for the Yang-Mills-
Higgs system.
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implies that \— BY*\ under the scaling transformation. close to the value determined by the Toda-Brumer stability
Hence A~EY* when the energy is varied. Obviously, the condition det@éV)<0. We obtain the following inequality
scaling property is valid for any value of energy. for diverging trajectories:

Our numerical data confirm these scaling relations, as

well as the fact that the fraction of phase spacerrespond- 2 2 2 , K 2 2

ing to chaotic trajectories does not vary wiHor a givena. (2q2+3q1)( 201 +6K05— §> —160102<0. (31

This is the reason wh{K‘®)) has close correspondence with

(\)2, rather than witH. It is not straightforward to obtain a clear-cut criterion for
For the YMH system described by the Hamiltonian in chaos from this inequality10]. This is due to the fact that

equation(19), K® is given by the potential is hot homogeneous and contains a quadratic

term also, apart from the quartic terms. However, if we ig-
nore the quadratic term, the stability condition yields

K2 = 2+pz[(9q§+6q§)p§+(6q§+18,<q§—x)p§ a1+ (3k—2)q203+2x05<0,
1 2
or
—24d,092p1P2]- (30
(3k-2) 1
X2+ ———x+ —|<0, (32
We compute(K?) using Eqs.(16), (17), and(23) and the 2K 2

maximal Lyapunov exponemt for various values ok and
E=100. \ is computed for 2000 random initial conditions
corresponding to this energy. For this we fifidd), the aver-
age value of Lyapunov exponent afidhe fraction of phase (3k—2)2—8x>0,
space corresponding to chaotic trajectories, for various val-
ues of k. We explicitly checked out thai\) andf did not  or
vary when different sets of 2000 random initial conditions
were used. In Fig. 3, we plgK®), f, and(\)? vs k. Here
again (K®) and (\)? are reasonably close to each other
(apart from a scale factgrwhereas there is marked differ-
ence between the behavior K?) andf. (K®) is very ~ This implies thatk<<3 or «>2. However, the system is
close to zero arounck= 025, wheread ~0.2 even atx def|n|te|y chaotic for low values of. Hence,K: %QOZZ is
=0.4. In fact, corresponding to this value gf \ for the the estimate for the critical value associated with order-chaos
chaotic trajectories is-0.14. In an earlier work on the onset transitions from stability considerations. This is close to the
of chaos in this model, Kawaja 1] had reported the transi- Value estimated by computingk ).
tion from mostly regular motion at large values ofto al- Next, we consider the variation dK®), f and (\)2
most totally stochastic motion at small valuesrofvith the  with energyE. In Fig. 4, we plot Iog(K@’), f and Iog()\)z
coexistence of invariant curves and stochastic orbitsk at against logE for k=0.1. f is a constant at high energies.
~0.4. Our numerical results are in agreement with his studEven at lower energies, there is very little variatiorf.ifhe
ies. slopes of the log-log plots of bottK ®)) and(\)? are very
Though the valuex~0.25 for transition from chaos to close to 0.5, indicating that both these quantities scale as
order, estimated from the behavior gk®) is low, it is  EY2 As we pointed out earlier, this is expected for a homo-

wherex=q3/q3. This can be satisfied only if both the roots
of the quadratic form are real, leading to the relation

(3x—6) 3

2
3k— —)>O. (33
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FIG. 4. Plots of(a) f, (b) logy(—(K®)), and
. (0) logy({\)?) against logE for the Yang-Mills-
Higgs system withke=0.1.
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geneous quartic potential. It is remarkable that it is true evemnat (K(_Z)) is closely related ta/\)?, rather than tof, in
for the model under consideration, though the potential congynirast to what the previous work seems to imply. Both

tains a quadratic term. (K®y and(\)? scale asE'?, for the quartic potentials we
have considered. In fact, for potentials that arethf degree
Il. CONCLUSIONS in the coordinates, it is easy to see that bgh?) and(\)?

A recently proposed geometric description of Hamiltonianscaie_ a€(""?. Thus the linear relation betweéK@) and
chaos has been very successful, both in qualitative and quaf)” is expected to be a general feature of Hamiltonian sys-
titative aspects. For systems with a large number of degred§Ms. However, there are some issues which require a more
of freedom, it even provides an analytic estimate of thedetailed stgdy. qu instance, we noted that the critical .value
maximal Lyapunov exponent, without having to solve equa_of x associated with the transition from chaos to order in the
tions of motion and the tangent dynamics. For systems witlYang-Mills-Higgs system estimated frofi ), was lower
a small number of degrees of freedom, it has been claimethan the estimate provided Hyand the Poincarsections.
that (K®) (a suitably defined sectional curvature averagedl hus there is need for finding a geometrical entity that can
over its negative values over a constant energy manifidd  €XPplain order chaos transitions more accurately.
an indicator of the global degree of chaoticity at that energy.
We have investigated in detail, the relations am¢K¢?),
the average maximal Lyapunov expongR} at a given en-
ergy, and the fraction of phase spdamrresponding to cha- One of the authoré&K.R.) thanks the Council of Scientific
otic trajectories, for two systems of physical interest. We findand Industrial Research, India for financial support.
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