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Global geometric indicator of chaos and Lyapunov exponents in Hamiltonian systems
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Recently a geometric description of chaos in Hamiltonian systems has been formulated using the tools of
Riemannian geometry. Here, Hamiltonian chaos is explained in terms of the curvature properties of the
configuration space manifold. In particular, it has been claimed that the average of an appropriately defined
sectional curvature (K (2)) over a constant energy manifold is a measure of the global extent of chaoticity for
systems with a small number of degrees of freedom. We investigate the relations between this quantityK (2)

and the maximal Lyapunov exponentl for some Hamiltonian systems of physical interest with two degrees of
freedom. We find that there is a close relation betweenK (2) andl2. Both the quantities scale asE1/2 for quartic
potentials, whereE is the energy. They are expected to scale asE(n22)/n for a general potential of degreen.
However, we find that thoughK (2) is a global indicator of chaos, it is not a sufficiently accurate measure of
order-chaos transitions, in all cases.
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I. INTRODUCTION

Recently a geometric approach has been developed to
plain the origin of chaos in Hamiltonian systems@1–5#. This
approach exploits the fact that the trajectories of a Ham
tonian system can be viewed as geodesics on a Rieman
manifold endowed with a suitable metric.

Consider a dynamical system described by the Lagra
ian,

L~q,q̇!5 1
2 aik~q!q̇i q̇k2V~q!, ~1!

or equivalently the Hamiltonian,

H~p,q!5 1
2 aik~q!pipk1V~q!. ~2!

For a fixed energyE, define the metric tensor

gi j 5~E2V!ai j , ~3!

and the ‘‘interval’’ or the ‘‘proper time’’ds by

ds25gi j dqidqj52~E2V!2dt2. ~4!

It can then be shown that the equations of motion can
written as geodesic equations in a Riemannian manifold

d2qi

ds2 1G jk
i dqi

ds

dqk

ds
50, ~5!

whereG jk
i are the Christoffel symbols associated withgi j .

Further, the Jacobi-Levi-Civita equation for the geode
spread@6# is essentially the tangent flow equations in t
geometric form@1#,

¹

dsS ¹Ji

ds D1S Rjkl
i Jk

dql

ds D dqj

ds
50, ~6!
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whereJi5dqi denotes the tangent vector,¹/(ds) is the co-
variant derivative along a geodesic, andRjkl

i is the Riemann
curvature tensor.

Pettini and co-workers@1–5# have shown that the domi
nant source of chaos in Hamiltonian flows of physical int
est is the parametric resonance induced by fluctuations o
scalar curvature even in regions where the curvature
mostly positive. This is true of systems with small as well
large number of degrees of freedom. This approach is dif
ent from the geometric description of chaos in abstract
godic theory, where chaos arises due to the negativenes
the curvature of the manifold. More recently, a local geom
ric indicator of chaos for single orbits in the Henon-Heil
Hamiltonian system has been formulated by casting the
namics as a geodesic flow on a Finsler manifold@7#. This
gives a one-to-one correspondence between geometry
instability and helps to discriminate between regular and s
chastic orbits on a given energy surface.

The geometric approach to chaos has another attrac
feature. For systems with a large number of degrees of f
dom (N), it has been shown that the ‘‘global degree of cha
ticity’’ can be obtained by computing the mean Ricci curv
ture averaged over a constant energy manifold, indepen
of the dynamics of the system@2#. It is possible to obtain an
analytic estimate of the largest Lyapunov exponentl, by
making a Gaussian hypothesis about the statistics of cu
ture fluctuations along a geodesic. This exponent is in v
good agreement with the corresponding exponent obta
from tangent dynamics@3#. Moreover, it has been demon
strated that the geometric approach can even provid
framework for understanding phase transitions that are
lated to the singular behavior of curvature fluctuations@5#.
When the number of degrees of freedom is small, one ha
take recourse to other methods as the Gaussian hypothe
untenable. It has been proposed that the average of a sui
negative sectional curvature~to be defined in the next sec
tion! over a constant energy manifold, is a global indicator
chaos for Hamiltonian systems with two degrees of freed
@4#; this has been verified in the case of the He´non-Heiles
model. In this paper, we explore the relation between t
©2001 The American Physical Society07-1
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geometric quantity and the Lyapunov exponent for so
Hamiltonians of physical interest and examine the vera
of this claim.

II. SECTIONAL CURVATURE AS A GLOBAL MEASURE
OF CHAOS

By simple algebraic manipulations of Eq.~6!, it can be
shown that

1

2

d2

ds2
iJi21K (2)~J,v!iJi22 I ¹

ds
JI 2

50, ~7!

where

iJi25gi j J
iJj , ~8!

v i5
dqi

ds
, with ^J,v&5gi j J

iv j50, ~9!

andK (2)(J,v) is the sectional curvature given by

K (2)~J,v!5Rmnlh

Jm

iJi
dqn

ds

Jh

iJi
dql

ds
. ~10!

It is obvious from Eq.~7! that any point withK (2),0 is an
unstable point. Hence it is expected that the average ofK (2)

over those points in the manifold where it is negative, w
give information about the degree of chaos for that manifo

It has been argued that it is necessary to go to a hig
dimensional manifold by augmenting the configurati
space, to get reliable information about the degree of ch
in the system@1,4#. It turns out that an enlarged configuratio
space equipped with the Eisenhart metric@8# is well suited
for the purpose. The local coordinates of the enlarged m
fold areq0,q1, . . . ,qN,qN11 whereq1, . . . ,qN are the coor-
dinates of the systems,q05t is the time coordinate, and
qN11 is an extra coordinate related to the action. The Eis
hart metric (gE)mn is defined through the relation

dsE
25~gE!mndqmdqn5ai j dqidqj22V~q!~dq0!2

12dq0dqN11, ~11!

where m,n50,1, . . . ,N11, i , j ,51, . . . ,N, and ai j is the
kinetic energy matrix. Whenai j 5d i j , it can be shown tha
the geodesic equation leads to the equations of motion w

dsE
252c1

2dt2,qN11~ t !5c1
2t1c22E

0

t

L~q,q̇!dt, ~12!

c1 ,c2 being arbitrary constants. Further, the only nonvani
ing Christoffel coefficients in this case are

G00
i 5] iV, G0i

N1152] iV, ~13!

and the nonvanishing components of the Riemann tenso

R0i0 j5
]2V

]qi]qj
. ~14!
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The sectional curvatureK (2)(J,v) depends upon the choic
of J. For a system with two degrees of freedom, a sim
choice is J5(J050,J15q̇2 ,J252q̇1 ,J350). This choice
satisfies^J,v&50. Corresponding to this choice, the se
tional curvature for a system with two degrees of freed
can be shown to be

K (2)~ q̇,q!5
1

2~E2V!F ]2V

]q1
2
q̇2

21
]2V

]q2
2q̇1

222
]2V

]q1]q2
q̇1q̇2G .

~15!

^K2
(2)& is the average of the negative values assumed by

sectional curvature over a constant energy surfaceSE , and is
given by

^K2
(2)&5

1

A~SE!
E

SE

dsEK2
(2)5

1

A~SE!
E dpdqd„H~p,q!

2E…Q~2K (2)!K (2)~p,q!, ~16!

where the areaA(SE) is given by

A~SE!5E
SE

dsE5E dpdqd„H~p,q!2E…, ~17!

andQ is the step function. This quantitŷK2
(2)& is the object

of central interest in this paper.
It has been shown in the case of the He´non-Heiles system,

that there is a close correspondence between^K2
(2)& and the

fraction of phase space that is chaotic~obtained by comput-
ing the maximal Lyapunov exponentl for a large number of
initial conditions!. In particular, in this system̂K2

(2)& gives a
correct estimate of the transition from order to chaos, wh
the energy is varied.

We make a detailed comparison between^K2
(2)& andl for

the following two systems with two degrees of freedom.
~1! Coupled quartic oscillator~CQO!:

H5
p1

2

2
1

p1
2

2
1q1

41q2
41aq1

2q2
2 , ~18!

wherea is a parameter. This system with a homogeneo
quartic potential, is known to be integrable fora50, 2, and
6 and certainly nonintegrable for higher values ofa. By way
of illustration, we give the Poincare surfaces of section c
responding to the integrable (a56) and nonintegrable (a
515) cases in Fig. 1. The Hamiltonian in Eq.~18! finds
several applications, particularly in high-energy physics@9#.

~2! Yang-Mills-Higgs ~YMH ! Hamiltonian:

H5
p1

2

2
1

p1
2

2
13q1

2q2
21

3

4
q1

41
3

2
kq2

42
1

2
kq2

2 . ~19!

This is the dynamical system corresponding to the Ya
Mills-Higgs field theory that is of great physical interest
high-energy physics, when spatially homogeneous fields
considered and a suitable ansatz for the fields is emplo
@10,11#. Herek is a parameter.
7-2
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FIG. 1. Typical Poincare´ surfaces of section
corresponding to~a! the integrable (a56) and
~b! nonintegrable (a515) cases at energyE
51024, for the system of coupled quartic osc
lators.
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A constant energy manifold is covered by ‘‘regular i
lands’’ for whichl is zero, surrounded by ‘‘chaotic regions
corresponding to whichl is a positive number. For specifie
values of the energyE and the parameter of the system (a or
k), l is computed for a large number of randomly chos
initial conditions to determine the average value ofl and the
fraction of the phase spacef, corresponding to chaotic trajec
tories.f is simply the fraction of the number of initial cond
tions for whichl is a positive quantity. An integration tim
;10 000 units was sufficient to ensure convergence ofl, in
all the cases we considered. The numerically computed v
of l is not exactly zero on finite time scales, even for regu
trajectories. For practical purposes we tookl to be zero,
whenever it was less than 0.001. In fact, we found thatl was
either a positive quantity significantly~a few orders of mag-
nitude! larger than 0.001, corresponding to chaotic trajec
ries, or a number less than 0.001, corresponding to reg
trajectories.
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The sectional curvatureK (2) corresponding to CQO is
given by

KCQO
(2) 5

1

p1
21p2

2 @~12q1
212aq2

2!p2
21~12q2

212aq1
2!p1

2

28aq1q2p1p2#. ~20!

For this system, we computêK2
(2)& using Eqs.~16!, ~17!,

and ~20!. The maximal Lyapunov exponentl is computed
for E51024 and several values ofa. l is computed for
2000 random initial conditions for each value ofa corre-
sponding to this energy. From this, we find^l&, the average
value of the Lyapunov exponent andf over the 2000 initial
conditions for a particular value ofa. ^l& and f differ very
little from their values corresponding to 500 or 1000 rando
initial conditions indicating that the size of the sample ch
sen for computations is more than adequate. To facilit
7-3
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FIG. 2. Plots of~a! f, ~b! 20.1533 ^K2
(2)&,

and ~c! 0.1012^l&2 againsta for the system of
coupled quartic oscillators.
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comparison amonĝK2
(2)&, f , and^l&2, we plot them in the

same graph againsta in Fig. 2. ^K2
(2)& and^l&2 are normal-

ized such that ata515, the scaled values of^K2
(2)& and^l&2

are equal tof (50.904) ata515. It is seen that̂K2
(2)& is

closely related tô l&2 rather thanf. We will discuss this
point later.

It is remarkable that all the quantities are zero fora,6.
This can be understood from the stability analysis of
system or the Toda-Brumer criterion@9,12#. The equation of
motion for a conservative system with potentialV(qi) is
given by

d2qi

dt2
52

]V

]qi
, i 51, 2. ~21!

The stability of a trajectory is determined by consideri
infinitesimal variationsdqi of qi , which satisfy the equa
tions,

d2dqi

dt2
52Wi j dqj , ~22!

where

Wi j 5
]2V

]qi]qj
, ~23!

is the stability matrix. By a suitable orthogonal transforma
tion V,

jk5Vkidqi , ~24!

we can diagonalizeW5]q
2V. The eigenvaluess1 , s2 of W

are given by

s1,25
1
2 @r 1t6A~r 1t !224~rt 2s2!#, ~25!

where
04620
e

r 5
]2V

]q1
2

, t5
]2V

]q2
2

, and s5
]2V

]q1]q2
. ~26!

In the diagonal representation,

d2jk

dt2
52skjk , ~27!

whose solution is

jk~ t !5exp~A2skt !jk~0!. ~28!

If we have a region wherert 2s25det@]q
2V# is negative,

then one of the eigenvaluess1 or s2 is necessarily negative
and for this negative eigenvalue,j or dq evolves exponen-
tially with time. Hence, the system is hyperbolic, corr
sponding to diverging trajectories, when det@]q

2V#,0.
For the coupled quartic oscillator,V5q1

41q2
41aq1

2q2
2

and this translates into the inequality,

~a26!~a12!q1
2q2

222a~q1
22q2

2!2.0. ~29!

As a is positive, this inequality is satisfied only whena
.6. When a,6, rt 2s2.0 for all values ofq1 and q2.
Then (r 1t)224(rt 2s2)5(r 2t)214s2 is positive and less
than (r 1t)2. Hences1 ands2 are necessarily real and pos
tive. As a consequence, there are no diverging or cha
trajectories whena,6.

From Eqs.~18! and ~20!, it is easily seen that under th
scaling transformation,pi→b1/2pi , qi→b1/4qi , the energy
scales asE→bE andK (2) scales asK (2)→b1/2K (2). Hence
^K2

(2)& scales aŝK2
(2)&;E1/2 when the energy is varied. Un

der the same scaling transformation,]q
2V→b1/2]q

2V, asV is a
homogeneous quartic inq1 and q2. The eigenvalues of the
stability equation,s i have the same scaling property as]q

2V.
Hences i→b1/2s i , under this transformation. The Lyapuno
exponentl is the average exponential rate of divergence
neighboring trajectories. From Eq.~28! it is clear thatl
;A2sk as far as the scaling properties are concern
thoughl is a global quantity andsk are local by nature. This
7-4
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FIG. 3. Plots of~a! f, ~b! 23.943 ^K2
(2)&, and

~c! 0.648 ^l&2 against k for the Yang-Mills-
Higgs system.
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implies that l→b1/4l under the scaling transformation
Hencel;E1/4 when the energy is varied. Obviously, th
scaling property is valid for any value of energy.

Our numerical data confirm these scaling relations,
well as the fact that the fraction of phase spacef correspond-
ing to chaotic trajectories does not vary withE for a givena.
This is the reason whŷK2

(2)& has close correspondence wi
^l&2, rather than withf.

For the YMH system described by the Hamiltonian
equation~19!, K (2) is given by

KY MH
(2) 5

1

p1
21p2

2 @~9q1
216q2

2!p2
21~6q1

2118kq2
22k!p1

2

224q1q2p1p2#. ~30!

We computê K2
(2)& using Eqs.~16!, ~17!, and ~23! and the

maximal Lyapunov exponentl for various values ofk and
E5100. l is computed for 2000 random initial condition
corresponding to this energy. For this we find^l&, the aver-
age value of Lyapunov exponent andf, the fraction of phase
space corresponding to chaotic trajectories, for various
ues ofk. We explicitly checked out that̂l& and f did not
vary when different sets of 2000 random initial conditio
were used. In Fig. 3, we plot^K2

(2)&, f , and^l&2 vs k. Here
again ^K2

(2)& and ^l&2 are reasonably close to each oth
~apart from a scale factor!, whereas there is marked diffe
ence between the behavior of^K2

(2)& and f. ^K2
(2)& is very

close to zero aroundk50.25, whereasf '0.2 even atk
50.4. In fact, corresponding to this value ofk, l for the
chaotic trajectories is'0.14. In an earlier work on the onse
of chaos in this model, Kawabe@11# had reported the transi
tion from mostly regular motion at large values ofk to al-
most totally stochastic motion at small values ofk with the
coexistence of invariant curves and stochastic orbits ak
'0.4. Our numerical results are in agreement with his st
ies.

Though the valuek'0.25 for transition from chaos to
order, estimated from the behavior of^K2

(2)& is low, it is
04620
s

l-

r

-

close to the value determined by the Toda-Brumer stab
condition det(]q

2V),0. We obtain the following inequality
for diverging trajectories:

~2q2
213q1

2!S 2q1
216kq2

22
k

3D216q1
2q2

2,0. ~31!

It is not straightforward to obtain a clear-cut criterion f
chaos from this inequality@10#. This is due to the fact tha
the potential is not homogeneous and contains a quad
term also, apart from the quartic terms. However, if we
nore the quadratic term, the stability condition yields

q1
41~3k22!q1

2q2
212kq2

4,0,

or

Fx21
~3k22!

2k
x1

1

2kG,0, ~32!

wherex5q2
2/q1

2. This can be satisfied only if both the roo
of the quadratic form are real, leading to the relation

~3k22!228k.0,

or

~3k26!S 3k2
2

3D.0. ~33!

This implies thatk, 2
9 or k.2. However, the system is

definitely chaotic for low values ofk. Hence,k5 2
9 '0.22 is

the estimate for the critical value associated with order-ch
transitions from stability considerations. This is close to t
value estimated by computinĝK2

(2)&.
Next, we consider the variation of̂K2

(2)&, f and ^l&2

with energyE. In Fig. 4, we plot log2^K2
(2)&, f and log2^l&2

against log2 E for k50.1. f is a constant at high energie
Even at lower energies, there is very little variation inf. The
slopes of the log-log plots of botĥK2

(2)& and ^l&2 are very
close to 0.5, indicating that both these quantities scale
E1/2. As we pointed out earlier, this is expected for a hom
7-5
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FIG. 4. Plots of~a! f, ~b! log2(2^K2
(2)&), and

~c! log2(^l&2) against log2 E for the Yang-Mills-
Higgs system withk50.1.
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geneous quartic potential. It is remarkable that it is true e
for the model under consideration, though the potential c
tains a quadratic term.

III. CONCLUSIONS

A recently proposed geometric description of Hamiltoni
chaos has been very successful, both in qualitative and q
titative aspects. For systems with a large number of deg
of freedom, it even provides an analytic estimate of
maximal Lyapunov exponent, without having to solve equ
tions of motion and the tangent dynamics. For systems w
a small number of degrees of freedom, it has been claim
that ^K2

(2)& ~a suitably defined sectional curvature averag
over its negative values over a constant energy manifold!, is
an indicator of the global degree of chaoticity at that ener
We have investigated in detail, the relations among^K2

(2)&,
the average maximal Lyapunov exponent^l& at a given en-
ergy, and the fraction of phase spacef corresponding to cha
otic trajectories, for two systems of physical interest. We fi
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that ^K2
(2)& is closely related tô l&2, rather than tof, in

contrast to what the previous work seems to imply. Bo
^K2

(2)& and ^l&2 scale asE1/2, for the quartic potentials we
have considered. In fact, for potentials that are ofnth degree
in the coordinates, it is easy to see that both^K2

(2)& and^l&2

scale asE(n22)/n. Thus the linear relation between^K2
(2)& and

^l&2 is expected to be a general feature of Hamiltonian s
tems. However, there are some issues which require a m
detailed study. For instance, we noted that the critical va
of k associated with the transition from chaos to order in
Yang-Mills-Higgs system estimated from̂K2

(2)&, was lower
than the estimate provided byf and the Poincare´ sections.
Thus there is need for finding a geometrical entity that c
explain order chaos transitions more accurately.
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